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Equation (9) may be solved if we assume that the second term on the right is
small, i.e.
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(Justification for this assumption will be given later.) Subject to the condition
= 0 at the slit boundaries =d/2, the solution for q is
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Then the pressure gradient becomes
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This last equation is the basis of the so-called Allen-Reekie rule, which specifies
that in the limit of small A7”s the fountain pressure P and the heat current
density are proportional and that this relationship is independent of the form
of F. . Since the right hand side of (13) is strongly temperature dependent,
for larger temperature differences this equation must be integrated to give
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In order to obtain the relationship between P and @ for large temperature dif-
ferences it is therefore necessary to obtain an expression for d7 dz as a funetion
of the temperature along the length of the slit. Since the temperature gradient
along the slit does depend upon Fy, , as will be seen below, it is obvious that the
relationship between P; and @ must for large temperature differences also de-
pend upon Fi, .

We now wish to find an expression for the temperature gradient. To do so we
must postulate a particular form for the frictional force F., . We shall concen-
trate our attention upon the Gorter-Mellink type of force, which we shall write
in the slightly generalized form

Fa(ve — Vu) = dppu(( Ve — W | — Ve) m_l (ve —va) |vi— W, l > Ve
(15)
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Here A is the (temperature dependent) Gorter-Mellink coefficient, v. is a
(possibly temperature dependent) critical velocity, and m has in various ex-




